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A method is presented for the solution of some systems of linear differ- 
ential equations with periodic coefficients by the use of the Laplace 
transform. The obtained results are used to find the characteristic ex- 
ponents of the solutions of systems closely related to the given ones. 

A criterion is given for the stability of,the solutions of a second- 
order equation with periodic coefficients for the case of resonance. l 

Of the classical methods in the theory of linear differential equa- 
tions with periodic coefficients that are most closely related to the 
present work there must be mentioned the method of Ince [ll (p. 32) for 
the solution of Mathieu's equation by means of continued fractions (see 
Section 9). 

1. In the sequel, capital letters will be used to denote matrices; E 
will stand for the unit matrix. The matrix A(p) = Ija .Cp>IIl” will be 
holomorphic (meromorphic and so on) in the regionI: iSflthe a .(p)(s, j = 

1, *.*, nt) are glyphic (rne~~~hic and so on) in the re$on 2. We 
denote the norm of a matrix by 

(1.1) 

* The author expresses his gratitude to N.N. Krasovskii whose review of 
the paper contained an important suggestion that was utilized in the 
final version of this article. 
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By the residue of the matrix A(p) at the point p = p. shall mean the 

matrix of the residues of the elements and we will denote it by resA(po). 

Let us apply the Laplace transformation [ 2 1 to the matrix Y(t)(t > 0). 
This means that we apply the Laplace transformation to each element of 

the matrix Y(t)(t z 0). The correspondence between the original Y(t) and 

the image F(p) extended by means of analytic continuation over the entire 

region of existence, will be denoted by 

Y (4 + F (P) (1.2) 

Many properties of the Laplace transform can be carried over to 

matrices. We note that if R is a constant m x m matrix with character- 
istic numbers pl, . . . . p,, then 

eRf f (pE - R)-l (1.3) 

Ihe matrix (pE - R)-l can have poles at the points pl, . . . , PI OdY* 

2. In Sections 2 and 3 we consider the general form and some proper- 

ties of the Laplace transform of the solutions of a homogeneous and of a 

nonhomogeneous system of linear differential equations with periodic 

coefficients. 

Let us consider the homogeneous system of differential equations with 

periodic coefficients of the form 

d; + A @)Y = 0 (A (Q = II bj llP> A (t + 24 = A (t)) (2.1) 

where the matrix A(t) is a complex function of bounded variation on [O, 

2771. 'lhe fundamental matrix N(t) of the solutions of the system (2.1) is 

representable in the form [3 1 (p.90) 

N (t) = P(t) eRt (P (t) = yj Pkr?q 
k=--co 

(2.2) 

Here R, P, are constant m x m matrices. The characteristic nuabers 

PI, *-*, p of the matrix R are the characteristic exponents of the solu- 
tions of t;e system (2.1). 

If N(t)++F(p), then (1.3) yields 

F(p) = g Pk (_!I&- R - ikE)-l (2.3) 
k=--03 

Since the order of lPkl is not higher than ka2 141, the series (2.3) 

converges. Hence we have the following result. 
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Lemma 2.1. ‘lhe image (Laplace transform) of the fundmental matrix of 
the solution of the systan (2.1) of linear differential equations with 
periodic coefficients is analytically extendible over the entire plane 

of the complex variable p, and is a meromorphic matrix p whose poles can 
be only at the points 

pa = ps - ki @=I,..., mp k = 0, i- 1, & 2,. . .) (2.4) 

where the ps(s = 1, . ..) m) are the characteristic exponents of the 
solutions of system (2.1). Denoting by 3 the entire plane of the complex 
variable p except for the regions 1 p - psbl < c (6 < 01, we obtain 

I F (PI I 3 0 as p-+cowithpE& 

Note 2.1. Let the poles of the matrix F(p) lie in the left hslf- 
plane, or if they lie on the axis Re p = 0. then let them be of the first 
order. Under these conditions the solutions of the system (2. 1) are stable. 
In the opposite case, they are unstable. This follows from the relations 

(2.2) and (2.3). 

3. Let us find the particular solution 
differential equation 

s + A (t) Y = 

‘Ihe left-hand side of the system (3.1) 
Let us suppose that 

of the nonhomogeneous linear 

@ (t) (3.1) 

coincides with that of (2.1). 

@ (t> -+ Q (P) (3.2) 

It is assumed that the image Q(p) exists and is holoaoxphic when 
Re p > = b, = const. In our particular case we assume that 

A 

+ Q (p) = x Cjvj! (p - ~j)-“j-~ (3.3) 
j=l j=l 

where C. are constant matrices, v . is a negative integer, “j is a com- 
plex ndber. We have [ 3 I (p.86) J 

y (0 = \N (t) N-l (z) a (z) dz (3.4) 
0 

‘Ihe matrix N-‘(r ) can be represented in the form 

iv-1 (7) = e-nr g iikeik+ 
k=-co 

Substituting (3.5) and (2.2) into (3.4)) we obtain 

(3.5) 
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Y(t)= ; 
t co 

(+rt \ 2 p-T+, exp {(t - T) (R + ikE)} M-k@ (+-h (3.6) 
I.=--M 0” k=-co 

l3y the use of the theoren on multiplication and translation [ 2 1 
(p.474), we obtain on the basis of 3.2 the following result. 

where 

Y (t) + 2 B, (~1 Q (P + ri) (3.7) 
r=--00 

B, (p) = i PIi (Ep - R - ikE)-l M_~_, (3.8) 
kc-_oo 

Lemmu 3. I. The matrices Br(p) can be extended over the entire plane 
of the complex variable p and are meromorphic matrices of p. their poles 
can occur only at the points psk (2.4). In the region 

& ( 1 p - psk I> E, (E>O, s=l ,...I In, k=O, $1, f2 ,...) 

we have 

1 B, (p) 1 = 0 (r-l) (r - -f ~01, I & (P) I --, 0 when PEE, 

For the proof of 
O(k-% 

Note 3.1. Let us 

(3.2) 

this lemma it is sufficient to note that lMkl = 

consider the ecluations in the B,(p) with Q(p) from 

where the matrices B,(p) 
const. Let us substitute 

when 

Q (~1 = 

B, (~1 Q (P + 4 = 0 
r=- 

(3.9) 

are bounded and holomorphic when (Re pi > b, = 

Q(p) in this equation in the particular case 

E (p - pJS + me Pot , I Re P I > h (3.10) 

Since the series (3.9) converges when p I p,, - ri; Br(p,, - ri) = 0. 

Because of the arbitrariness of p,, and of the holomorphness of B,(p) we 
have B,(p) s 0. Hence, the image of Y(t) in the form (3.7) (where the 

Br(p) are bounded and holomorphic when 1 Re pI a bl = const) is unique. 

Lemma 3.2. If a(t) has the form (3.31, then the image (3.7) of l’(t) 
can be extended over the entire plane of the complex variable and it is 
a mesomorphic matrix whose poles can occur Only at the points p,k (2.4) 

and at the points 
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@jk = Oj - ki (i = 1,. . ., A; k = 0, f 1, -J: 2, . . .) (3.11) 

In the region 

C" (E=~ 
S 

"p,-%ki>s, IP---jkbE; E>@ 

9.e.v ; ,.. ., A; k =O, f 1, f2,. . .) 

the series (3.7) converges absolutely and uniformly and 

IF@)1 -0 when p-r= and PEE,’ 

'Ihe proof follows from L-as 2.1 and 3.2. 

4. Let us consider the system of linear differential equations of the 

particular form 

$2 e+‘L, (d) Y (t) = CD (t) 
q=- I 

(d= $-) (4-l) 

where the L4(d) are linear differential operators 

L,(d) = $ Aqjd’ (q=O, f1. *2*...1 
j=O 

'Ihe Aqj are constant m x I matrices. Let us suppose that 

A,, z E, i IAvJ<l 
q=-1 
q+o 

(4.2) 

(4.3) 

For the sake of simplicity we assune that I is finite. If I = m, it 
is sufficient to require that the following conditions be satisfied: 

5 lAdI< O” (j = 0, 1, . . -, n) (4.4) 
q=-co 

We are looking for a solution of the system (1.1) with the initial 
conditions 

Y (0) = Y&O), . . . ) yb-1) (0) = yoW-l) 
(4.5) 

Applying the Laplace transformation to the system (Al) with t > 0, 

we obtain a system of linear difference equations for the image F(p) of 

the solution of the system (4.1) with the initial conditions (4.5) 

i Lq (p -1 G) F (P + qi) = Q (P) + i Yq (P + 40 (4.6) 
q=--I q=-1 

where 
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n-1 n 

up,(p) _- 2 2 Aqjyo(k)p+k-l 
k=o j=k+l 

(4.7) 

Let us introduce the notation 

Q (P> = Lo-’ (P) (Q (P) + ,zl ‘G (P + @I) (4.8) 

K, (P) - - Lo-’ (P) L, (P + Q$ 
q=-1 
440 

From (4.7), (4.8), (4.2) and (4.9) it follows that 

Q (PI ---) 0 when Rep -.+ + 00, Kl (P) - - A,, when p- 

K, (P) I (4.9) 

(4.10) 

= (q==Sl,...,$Z). 

lhe system (4.6) of difference equations takes on the form 

F (P> = a (P) + 2 Kq (p) F (p + qi) (4.11) 
q=-1 
940 

Suppose F(p) is a solution of the system (All) when a(p) E 0. And 
suppose that this solution is bounded and holomorphic when Re p ;b b, = 
const. From (4.10) and (4.3) it follows that there exists such a number 
b, > b, that sup r(p) < 1 when Re p > b,. 

Let IF(p)! Re p> b = a(0 < a < 00). Then it follows from (4.11) that 

I F(p)1 Re P>bl < a, i'.e. F(p) r 0. 

The existence of a bounded solution F(p) of the system of equations 
(4.1) when Cl(p) & 0 follows from Lemmas 2.1 and 3.2. 

We have thus proved the following lenaa. 

Lemma 4.1. If F(p) + Y(t)(t > 01, where Y(t) is the solution of the 
system (4.1) with the initial conditions (4.5), then F(p) satisfies the 
system of linear difference equations (4.6), (4.11), which has a unique 
holomorphic solution bounded when Re p > b,, where b, is large enough. 

Note 4.1. Many systems of linear differential equations with 
isolated regular and nonregular singular points can be reduced I. 5,6 1 to 
the form (4.1) by means of a change of the independent variable. 

We give a few particular cases of finding the original from the image, 
and of the construction of the representation. 
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5. In the particular case, whena(t) has the form (3.3), it can be 

shown that 

Y(-tt)+--F(-p) (t > 0) when Y (1) + F(p) (t > 0) 

From this it follows that 

bi+icu -b,--ice 

Y(t)= &. p. \ epfF(p)dp + &v. p. ePtF (p) dp (5.1) 

where b, is sufficiently large. From has 2.1 and 3.2, we obtain 

Y(t) = V.p.x res F (pj) ePjf 
i 

(5.2) 

where the sunnation is carried out over the poles of the matrix F(p). 

For finite I in (4.1), the series (5.2) converges in some strip along the 

real axis t. If in (4.2) the matrices A I O(q = f 1, . . . . f l), then 

the series (5.2) converges absolutely aS uniformly in an arbitrary 

finite region of the complex variable t. 

Let us consider the characteristic equation of the system (4.1) aver- 

aged with respect to time, 

DetLo @)= 0 
(5.3) 

Here, and in the sequel, we denote by pl, . . . . pnx n the roots of the 
equations 

pjk = pj - ki (i=l,..., mXn, k=O, *I, &2,.. .) (5.4) 

(a) Mien L (p) I 0 (q = f 1, f 1) we have a system of linear 

differential &uations with cons&~ coefkcients. Such equations are 

usually solved by the use of the Laplace transform. 

(b) Let L (p) s 0 (q = - 1, . . . . - 1). In this case one can find the 

needed solut!on of the system of linear difference equations by the 

method of successive approximations from the recursion formulas 

Fo (p) = Cl (p), Fj @) = f2 (P> -k 2 Kq (P> pi-1 (P f 4i) (i = 1,2. . .I (5.5) 
q=1 

so thatFj(P) - F(p) as j -, m, where F(p) is a meromorphic matrix and 

its poles can occur only at the points pjk (5.4) and o. (3.11) for 

negative values of k. 
Ik 

In the given case this method is similar to the method of Frobenius 
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for the solution of a system of linear equations of the Fuchsian type 

with a regular singular point 13 1. 

6. The sections 6 and 7 are the most essential ones in this ~x)rk. In 

them we study the properties of some auxiliary matrix functions. 'lhese 

functions are then used for the construction of the analytic continuation 

of the solution of the system of linear difference equations (4.11). 

Let rO, rl, . . . . rS’ k,, k,, . . . . k, be integers. We introduce the 

matrix functions 

s (p) = s;;,‘.:‘.‘:;,” (p) = f$ 2’ KplKq2. . . K go 
a=1 Qt..& 

K,,=K,,(p + koi), Ka=Kq,(p + (ko +ql) i), . . ., 

K,, = K,, (p + (ko + ql t- . . . -I- qa+) i) 

(Q1 = -& 1, . . .;+ I; . . .; qa = rt 1, . . ‘3 f q (6-l) 

Here the superscript prime ('1 at the swrmation symbol indicates that 

one takes only those terms whose indices ql, . . . . q. satisfy the addi- 

tional conditions 

(4 ko + ql + qz + . - - + 4, = PO 

(4 h . . .> ka) n {ko + ql, ko + q1-k qz, . . ., ko + ql 4 qz + - . . + q,_,) = A 

(cl (r’1, * . .( ~‘~}c{k,+q,,k,+q,+q,,...,ko+ql+q,+...+q~_~> 

Here, and in the sequel the following notations are used: (...I indi- 

cates a set; n denotes the intersection of sets; c is the inclusion 

sign for sets; 

(4.91. 

A is the empty set, [null setl; Kq(p) is the matrix in 

If for an arbitrary u > 0 there Qes not exist a set of indices 

q.(q. = f 1, . . . , f 1, j = 1, . . . . a) such that the conditions (u), (b), 
($1 Le simultaneously satisfied, then we set 

s (P) = 0 (6.2) 

Let us consider a finite closed region X of the complex plane p. We 
take notice of those values of k for which the points pik (5.4) lie in 

the region 2, and we denote these values of k by k,, . . . . k,. 

Lemma 6.1. If k,,E( k,, ..,, k,j then for sufficiently snall \AqjJ 
(q = f 1, . . . . f 1, j = 0, 1, . . . . n) the series (6.1) converges 

absolutely in the region2 to a regular matrix with an arbitrarily snail 
norm. 
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Proof. Let us denote by x the sup r (p*+ ki) with k f k,, . . ., k, and 

p=S. From (4.9) it follows that if the lAqj\ (q= f 1, ,.., f 1, 

j=o, 1, . ..) n) are sufficiently small, then the r(p) (and with it x) 
will be as small as we please &en (p - piI > 6 (c > 0, j = 1, . . . , m x n). 

Since 

1 q*,KQ*, - * -7 KQa I < 2’ 1 KQ, I 2’ I K?* 0 - * .)2’ I KQa I G x” 

(Ql’&l,. ..,Q&; . . 
PI QO (6.3) 

.; q,=fL...,fq 
where 

& = KQ, (P + hi), KQ, = KQ, (p + @'J + 41) $ . * . 

KQa = KQa @ + (ko + Q1 + . . . + 61) i) 

the norms of the tens of the series (6.1) will be dominated by the terms 
of a geometric series. 
Z with k f k,, . . . . 

‘Ihe matrices Kq(p + ki) are regular in the region 
k,. Therefore, the series (6.1) converges when x < 1 

to a regular matrix whose norm is arbitrarily small for snall enough 
values of x. 

Note 6.1. Since if follows from (4.91, (4.3) and (4.4) that 

limz@)= 2 IA,,/<1 
P- 

(6.4) 
Q=--I 

Q+O 

we have (for Re p > b, where b is large enough) that the series (6.1) 
converges absolutely to a regular bounded matrix. Furthermore, we assume 
that the matrices S, determined by (6.1). are continued analytically from 
the region Re p > b over the entire region of their existence. 

Note 6.2. Let s be bounded region of the complex plane p. From (6.3) 
it follows that there exist integers k, < kp such that the series (6.1) 

for the matrix 

converges if pE X. 

Note 6.3. If in the lemma 5, k,E(k,, . ..t k,), then the series 
(6.1) will have terms containing the factors K,(p + k,i) (4.9) which can 
have poles in the region 2. If one wants to eliminate these singularities 
it is sufficient to multiply the series (6.1) on the left by L,(p + k,i). 

From this it follows that the matrix 
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)“@1 PI, . ..I ‘p 
LI (P + hoi) Sk,, kI, . . . . k, ($4 when P E 2 

is regular and arbitrarily small in norm for small enough ( Aqil (p = rt 1, 
. . . . fl. j=O, 1. . . . . n), and the series (6.1) converges when p G 2 
but p f pi - kgi Cj = 1, . . . , Al x n). 

‘7. At the beginning of this section, we give a geometric interpreta- 
tion of the matrix functions S(p) defined by (6. I). This interpretation 

is convenient for the study of the properties of the matrix functions. 

Let us consider the first quadrant of rectangular coordinates (Fig. 1). 

To every diagonal (straight line y = x + k, where k is an integer) there 

corresponds the argument p + ki indicated at the upper right corner. In 

Fig. 1 we construct the broken lines which consist of the vertical and 

horizontal segments whose lengths are integers not greater than the 

number 1. 

‘Ihe beginning of a broken line is a 

point on either the x-axis or the y-axis 

with integer coordinates. We place at 

this point the initial point of the first 

segment in such a way that the segment is 

directed either vertically upward or 

horizontally to the right, and so on. 

The broken lines may consist of one, 

two or more vertical and horizontal seg- 

ments. 

We consider tv,c broken lines to be 

distinct if they dD not coincide along 
all of their segments. If the beginning 

of the first segment lies on the diagonal 
p + k,i, then we shall say that the broken line begins on the diagonal 

p + k,i; if the end of the last segment of a given broken line lies on 
the diagonal p + k,i, then this broken line is said to terminate, or end 
on the diagonal p + r,i. 

Suppose that a given broken line consists of u > 1 segments. If at 
least one of the ends of the segments 1, . ..) o - 1 lies on the diagonal 

p + si then we shall say that the given broken line intersects the 

diagonal p + si; in the opposite case we shall say that this broken line 

intersect this diagonal. 

We associate with each of the described broken lines an expression. 

‘ihis expression shall be the product of the matrices Kq(p + si). To every 
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Property 7.1. Let s be an integer. Then 

(7.1) 

Property 7.2. If some of the number k,, . . . . k, and rl, . . . . rp are 

equal, then S(p) P 0 b ecause it is impossible to satisfy simultaneously 
conditions c and d of Section 7 (or conditions b and c of Section 6). 

Property 7.3. Let k, f rO. Let us lay off on the real axis the numbers 

k,, k,, . . . . k,q,. If between k, and r,, there will lie at the integer 

points not less than I nunbers of the numbers k,, . . . . k,(a > 11, then 

condition (6.21 is satisfied. 

Property 7.4. Let s be an integer and se (K,, . . . . k,, rl, . . . . rp), 

then 

(7.2) 

For the proof we take from the series standing on the left-hand side 

of Equation (7.2) an arbitrary term, that is, a matrix product 

K,, (p + h-oi) Krt (p i- (ko + 41) i> . . . K& (p + (ko -I- 41 + q2 + . . . + qa-1) 9 

For a given k, this term will be completely determined by the indices 

Ql# '.., q,tqi = + 1, . . . . f 1, j = 1, . . . . al. We separate the set of 
different sequences of the indices ql, . . . . qu satisfying conditions (al, 

(bl, (cl and (d) into two nonoverlapping groups. (The terms of the series 

(6.1) are hereby also separated into two nonoverlapping groups.1 'lhe 

sequence of indices ql, . . . . qc is put into the first group if 

S-(g {k. + q1, x-0 + q1 -I- Q?, . . ., Ii.0 -.I- q1 -i- q2 -I- . . . -I- Q,_J 

and into the second group, if 

s E {ko + 41, h-0 t q1 -;- 42, . . ., h-0 + 91 + q2 +. * * -I- 4,_1) 

Conversely, from the conditions (al, (b), (cl, (6.1) it follows that 

every term of the series on the right-hand side of (7.2) is also contained 

in the series of the left-hand side of (7.2). 

In the geometric notation this property implies that all adnissible 

broken lines are divided into two classes: those which intersect the 

diagonal p + si, and those which do not intersect it. 

Property 7.5. From the definitions given in Sections 6 and 7 it 

follows that 
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jth segment 

Here (41 is 

the se+qnent 
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there corresponds a particular factor K,(p + sji)(j= l,...,(~l. 

equal to the length of the segplent (q = f 1, . . . . + 1). If 

is directed upward, q > 0; if it is directed to the right, 

q < 0. The nunber p + sji is the argunent of the diagonal on which the 

jth segment of the given broken line begins. The order of succession of 

the segment determines the order of the factors which are multiplied 

from the right. 

We call attention to the fact that a given factor corresponds to 

different segments in Fig. 1, which differ only in a translation parallel 

to the bisector of the principal angle. 

Example 1. To the broken lines of Fig. 1 there correspond the follow- 

ing expressions 

K1 (P>K-1 (P + i) Kz (~1, K-2 (p) Ki (p - 2i) KI (p - i) K-1 (p) 

Definition 7.1. Let k,, k,, . . ., k,, rO, rl, . . ., I-B be integers. We 
select the broken lines satisfying the conditions: ' 

(a) The beginning of the broken lines is on the diagonal p + k,i. 

(b) ‘Ihe end of the broken line is on the diagonal p + r,i. 

(4 ‘Ihe broken lines do not intersect the diagonals p + k,i, 

(d) P + rli, 

The 

broken 

by 

p + k,i, . . ., p + k,i. 

Each broken line intersects the diagonals 

p + r,i, . . . . p + rPi. 

sun of the expressions that correspond to 
lines satisfying the conditions (a), (b), 

all possible distinct 

(cl, and (d) we denote 

This definition agrees with the earlier given one (6.1). 

From the condition (d) it follows that u (the nunber of segments 

making up an adnissible broken line) cannot be smaller than p+ 1 if 
rlj . . . . rp are distinct. 

On the basis of our geometric interpretation, let us consider the pro- 

perties of the introduced matrix functions when Be p > b, where b is 
large enough. S' ince the series of the type (6.1) are absolutely convergent 

when Re p > b (Note 6.11, one may change the order of sunmation and re- 

arrange the terms of the series. Because of the uniqueness of the analytic 

continuation of a function, the properties listed below will apply also 

to the analytically extendedmatrices. 
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';w kl, . ..I k, (P> = "R, (p -t- &i) &+&, kl...., k, (p) + ~6;+,K,(p + k,i) (7.3) 
(q= i-1,. . . , f 1; q t- ko # 4, . . . ,k,) 

'Ihe superscript prime ('1 indicates that we have omitted the terms 

which do not satisfy the additional conditions 

6,r = 1 if r = s, 6,‘=0 if r#s 

In the last sun there stands out one term which corresponds to the 

single segment of length (r - k,(. 

Property 7.6. In analogy with property 7.5 we may write 

s&, k,, . . . . k, (p> = =&?c,, . . . . k, (P> K-, (P + tr + 4) i) + -%+,&I (P +kd) 
(q=fL...,rtk q+r+kl, . . . . k,! (7.4) 

One may also write down relations analogous to (7.5) and (7.6) in 

case @f 0. 

Property 7.7. If r1 f k,, . .., k,, then 

s$, ‘H’,. . ..I k, (p> = ‘-%io, k,, . . . . I;,. f-1 (p) s::, kl. . ..I k, (p) (7.5) 

Proof. we denote by ql’, . .., qn’, and q ‘, . . . . qv’, the indices 

which determine the terms (see property 7.4 j in the first and second 

series on the right-hand side of (7.5). From the definition (6.1) it 

follows that the following conditions are satisfied: 

k. -j- ql’ i-- . . . i- qotI = rl, {kl, . . ., k,, 71) n 
n {lie $ q’l, X-0 _i- Q1’+(l?‘, . . . , k. + Ql’ + q2’ i- . . . -/- qLl> = h C7m6) 

7-l + 41" + : . . -t qa.” = ro, {kl, . . ., ~a~ n 

" 

n (r1 + qln, r-1 + 41” -t_ qzs, . . .,rl+q1”+qz”+...+qo”-l} =A 

From this it follows that the sequence of indices ql’, . . . . qD#‘, 
4Y 

41 P l ‘*, S,” 
” 

satisfies the conditions 

(a) ko + q1' + . . . +- qa,’ -t q1" + . . . + qd:’ = I’0 

(b) {kl, . . . , k,} n { ko _1- ql’ , . . . , ko -t_ ql’ + . . . + qisP1, n, n + @“, . . . 
I 

. . ., 1‘1 _i- QIM -/- . . . + qa,,_l} = A 

(c) n G {ko $- ql’, . . ., li0 + ql' + . . .+ &-1, r1, h + qF, . . .) 

r1 j- 41" + . . . $- q:n_,> 

that is, the product of two arbitrary terms in the series on the fight 
of (5.7) enters also into the left side of (7.5). Conversely, from (6.1) 



890 K. G. Valeev 

it follows that every sequence of indices ql, . . . . q,, which determines 

a term on the left side of (7.5), can be broken up in a unique manner 

into groups 

qj = Qj’ (i = 1, , . ., a’), qj+O# = qjv (j = 1, . . ., 0”) (a = 0’ + a”) 

so that qj’ and qj M satisfy the conditions (7.6). From this it follows 
that an arbitrary term of the left side of (7.5) can be uniquely repre- 

sented as the product of tv+o terms which enter respectively into the 

first and second factors of the right side of (7.5). 

'lhe property 7.7 is thus established In the geometric interpretation 

this property follows from the fact that each admissible broken line must 

intersect the diagonal p + r,i at least once. Ihe part of the broken line 

which precedes the first intersection with the diagonal p + rli corre- 

sponds to the first factor in (7.5). 'lhe essential role is played by the 

circmstance that the translation of the broken line parallel to the 

bisector of the principal angle does not affect the form of the expression 

corresponding to the given broken line. phalogously, by separating the 

broken line into parts preceding and following the intersection of this 

line with the diagonal p + rli, we obtain 

s ro. r1 If,, k,, . ..I k, (p) = J%,, k1, . . . . k, (p) ‘%:. 1~1. . . . . k,, rpI (p) (7.7) 

if r1 f k,, . . . . k,. 

Property 7.8. Let k, f k,, . . . . k,. From the properties 7.6 and 7.7 

we obtain 

'%. k,, . ..* k, (p) = ‘$, ki, . . . . k,, k, (p, + si;,“;,, . . . . k, (p) = 

= (E + ‘-$. kl, . ..I k, @)> ‘%o, k,, . . . . k,, k,(p) (7.8) 

Property 7.9. Let r f k,, . . . , k,. In analogy with property 7.7 we 

have 

&, ki, . . . . k, (p) = &s k,, . . . . k,. ;P (p> -I- ‘%,.‘k,s . . . . k, (p) = 

= &, Ii,. , k,. P (E + ‘% kj, . . . . k, (p)) (7.9) 

Property 7.10. Let a = /3 = 0, k, = rO = 0. From the properties 7.6 

and 7.7 we obtain 

so0 (P> = 8”. o” (P) -t- so, o” (P) = G, 0 (E i- s: (I’)) 
Hence, 

E _1- s; (p) = (E - so,o” (p))-’ (7.10) 
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If k, # k,, . . . . k,, then in analogy with Formula (7.10) we obtain 

E + 82. fit. . . . . k, (P) = (E - Sk, kl, . . . . kpl, ho (P))-’ (7.11) 

Lemmu 7.2. Let I: be a bounded region of the complex plane, 'lhe pro- 

perties 7.1 to 7.10 make it possible to continue analytically the matrix 

function ‘%,,,kl,...,k, p ( I in 2, that is, to express the given matrix 

function by means of a finite number of operations in terms of other 

matrix functions for which the series (6.1) converges in the region 2. 

Proof. From Notes 6.2 and 6.3 it follows that it is sufficient 

to express '%aJ+..., k=(p) in terms of matrix functions with an addi- 

tional subscript y(y f k,, . . . . k,). Let us consider the possible cases. 

(A). Let y = k, f k,, . . . , k,; from the properties 7.8 and 7.10 we 

obtain 

sll,, ki, ..,, k, (p> = (fs - 82, k,. . . . . k,, k, (P))-ls~o, kl, . . . . kcr, k,(P) (7.12) 

(B). Let y = r f k,, k,, . . ., * k,, from the properties 7.9 and 7.10 it 

follows that 

s; ,. 0, k1, . . . . La I' (P) = &. lil, . . . . k,. r (P) tE - s:, k,. . . . . k,, + @>)-I (7.13) 

(C). Let y f r, k,, k,, . . . . k,; from the properties 7.9, 7.10, and 

7.12 (y = k,) it follows that 

s;,. kl. . . . . k,(p) = ‘%o, kl, . ..I A-2, Y (p> + 

+ s;o> k,, . . . . k,,.c(P) tF: - ‘%, kl. . ..I k,, Y (P) ,-‘s;. kl. . . . . k,,y (p) (7.14) 

so that 

‘%.‘ki, . . . . Ii, (P) = ‘%o,k,, . . . . ka. Y (p) ‘% kl, . . . . k,(p) (7.15) 

In each case it was possible to express S; k k (p) in terms of 
0' 1,"" a 

matrix functions with an additional subscript y. 

8. Lemma 8.1. A solution of the difference equations (411) is given 

by the series 

F (P) = Q(P) + 5 Sor @) Q(P + ri) (8.1) 
r=--co 

Proof. Let us substitute the series (8.1) into Equation (4.111 

and equate the coefficients of Sz (p + ri). We obtain 
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so0 (p) = 2 Kl (P) so-q (P + 49 (8.2) 
q=*1, . ..I 11 

So’(P) = x & (PI sop-q (P + PI + 2 %‘4 (p> P + 01 63.3) 
q=+1. . . . . iI q=t1. . . . . +I 

From the property 7.1 we have 

s,-q(P + Qi) = S,o(P)T So+@ (P + @) = xlP(P) (1.#00) (8.4) 

and Equations (8.2) and (8.3) are satisfied identically on the basis 

of property 7.5. 

Ihe series, which determine S,‘(p), diverge, as a rule, in the neigh- 

borhood of the points pjk (5.4). Making use of Lemma 7.1 one can ana- 
lytically continue the series (8.1) over the region of interest, and thus 

study the behavior of the function. From the properties 7.1 to 7.10 we 

obtain 

G(P) = (E - %o @>>-' Go (P) (8.5) 

G(P) = G- (P) (E -G,o(P ?- ri) (8.6) 

Making the appropriate substitutions in (8.1) we have 

F (P> = @ - xl0 b))-’ [fi(P) + 2 Sk0 (PW (P + 41 
E.-CC 

r=Pn 
a3 

(8.7) 

(8.8) 

F (P) = (E - Si,-o (PI)-’ Q (P) + 2 SZ,r (P> (E - Si,o (P i- ri))-‘Q (P + 4 

Definition 8.1. Solutions of the system of linear difference equations 

(4.11) of the form (8.1), (8.7) and (8.8) we shall call solutions of the 

first, second or third form respectively. 

In the particular case when Q(t) has the form (3.31, the locations of 

the points aji (3.11) are known and, hence, one can compute the particular 

solution of the system of equations (4.1) by the use of Formula (5.2) 

without knowing the solution of the homogeneous system of equations (4.1). 

9. Let us consider the determination of the characteristic exponents 

of the solution of a system close to the stationary system of equations 

(4.1). 

From (4.8) and Note 3.1 it follows that 
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B, (p) = (E - S: (p)) LO1 @), Br (P) = S; (p) LO1 (P -I- 4, r -+ 0 (9.1) 

For the computation of the characteristic exponents psk it is suffi- 

cient to find the poles of the matrix B,(p). Let us consider the matrix 

B,(p). 

Lemma 9.1. The roots of the equation 

Det (Lo (P) --WP)So,,o(P)) =o (9.2) 

are the characteristic exponents of the solutions of the system of linear 

differential equations (4.1). 

'lhe proof follows from Formula (9.1), Lmmra 3.1 and from the fact 

that 

(E + SE (P>) LIT’ (P) = SJ (PI - Lo (PI St 0 @)I-’ (9.3) 

Let us consider the case uhen the Aqi(q = f 1, . . . . f 1, j = 0, 1, 

. ..) n - 1) contain a small parameter IL, 

4j = Gqj (q = f 1, . . ., + 1, j = 0, 1, . . .,n) (9.4) 

where the Bqj are constant m x n matrices, vhile the A,j(j = 0, 1, . . . . 

n - 1) are matrices and continuous functions of I”. The characteristic 

exponents psk (2.4) d epend on p (we shall write p,,(p)). One can select 

n x n characteristic exponents (we shall denote them by p,(p)) such that 

p&O) = p&s = 1, . ..) IX n) [see (5.3) I. Let us list some known pro- 
perties of the p,(p). 

Property 9.1. The exponents p,(p) are continuous functions of p. 

Property 9.2. According to Liouville's theorem 

77lX7l mxn 

2 P, (t”> =- 2 P, 
S=1 ;=;I 

Property 9.3. If 

Aqj = A+ (q-+1 ,..., +1, j=O,l,..., n), Im A, -0 

then the p,(p) are distributed symmetrically relative to the axis 

lm p = 0. 

Property 9.4. In canonical systems of linear differential equations 
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the p,(p) are distributed symmetrically relative to the axis Re p = 0. 

Let p, be some characteristic exponent of the solutions of the system 

(4.1) under the hypothesis (9.4) with p = 0. 

We consider the sequence 

Det LO (p. + ki) (p = 0, k = 0, * 1, & 2, . ..) (9.5) 

The difficulty of finding p,(p) close to p, depends on the nunber of 

vanishing tens of the sequence (9.5). 

1. Suppose in the sequence (9.5) only one term is zero (vanishes) 

when k = 0. ‘Ihen the series for L,(p)S~,,(p) converges for snail enough 

p in the region Ip - p,I < E (6 > 0) and for an arbitrarily small norm 

(Leaxna 6.1; Note 6.3). Since the broken lines that correspond to the 

term in S~,O(p~ d eviate from the diagonal p and return again to it, we 
have 

Lo (P) Go(P) = PZ ( )* * * (9.6) 

According to a theorem of Fbuche, the nunber of roots of (9.2) that 

are near to p,, when p is small enough, is equal to the multiplicity of 

the root p, of EQuation (5.3). 

Consequence. Let pl, . . . . pmxn be the roots of Equation (5.3) 

and let 

1'r ZZZ pz =. . . = p,,#f$ - Ici (i = h + 1, ., in X 12, k = 0, + 1, f 2 ,...) 

then pl(,u), . . . . pk(p) are roots of Equation (3.2) for small enough 

CL, If p1 f pi - ki (k = 0, + 1, f 2, . . . . j = 2, . . . . mn), then pi(p) = 

p1 + p2( J..., that is, the characteristic exponent pi(p) is (to within 

the accuracy of small orders of cl) a characteristic exponent of the 

system (4.1) averaged with respect to time. 

2. Suppose that in the sequence (9.5), there vanish tuo terms and we 

have Equations (7.14) with k = 0 and k = - y (y > 0). From Lemma 7.1 

and Equation (7.14) it follows that 

-&I (P) - 120 (P) J% (P) = Lo (P) -Lo (P) %0-Y (P) - 

--L,(P) &Yo,_Y(P)(L~ (P - ri) - 

- L, (p - ~+C,,, __1 @))-lLo (P - Yi) x,,,,.:, (P) ($l.Ei) 

From Note 6.3 it follows that for small enough values of ~1 and E, the 

series of the type (6.1) on the right side of (9.8) converge when. 
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IP-P*l <c* In more complicated cases, when in the sequence (9.5) the 
zeros occur for three or more different values of k, one can apply Lenzna 
7.1. From Note 6.2 and Lemma 7.1 it follows that for the finding of 
the characteristic exponents of solutions one can use Lemna 9.1 also 
for finite matrices A4j (4 = f 1, . . . , f 1, i - 0, . . . , n> (4.2). With- 

out proof we remark that Equation (9.2) constructed for Mathieu’s equa- 
tion [ 1 1 can be transformed with the aid of Lemma 7.1 into a continued 
fraction. This fraction will converge on the entire complex plane p, 
and coincides with the equation for the characteristic exponents ob- 
tained by the method of Ince in the form of a continued fraction [ 1 1 
tp. 321. 

Example 2. Let us consider the system of linear differential equations 

with periodic coefficients 

where 

‘$ = (A + p B (t)) Y (9.0) 

B(t) z i &/-ik$ 1 Bl; [ -cc0 (9.10) 

&=-CO k=-co 

Let pl, . . . . p, be the roots of the characteristic equation (averaged 

with respect to time t) of the system (9.9) with ,u = 0 

Det (Ep -A)=0 (9.11) 

Suppose that if p,~ l pl, . . ., p,) the following conditions are satis- 

fied 

I P* - PS I fki 

We have 

(k = _+ 1) + 2, + 3, . * * ) s = 1, . 1 . ,nt) (9.12) 

A-, (p) = I* (Ep - A - &I)-1 B, (9.13) 

Equation (9.2) takes on the form 

Det (Ep - A - pBo - 5 pcb x Bkt (B (p + kli) - A - pB,)-’ . . . (9.14) 

0=2 x 

. . . 
%-l (E (P + (kl + kz + . . . + k,_,) i) - A - @,)-’ Bh, 

> 
= 0 

(x = h-1 -t . . . + k, = 0, 0~ {kl, k1+ kz, . * . , kl, $ * - . -F k,_l} O~(kl. . . . , kq 

The roots of this transcendental equation which are near p , for small 

values of p, will be characteristic exponents of the solution: of the 

system (9.9). 
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10. We shall give criteria for the stability of the solutions of a 

second-order equation, with real periodic coefficients, of the fonn 

(10.1) 

where y f 0 is an integer, 

r(t) = ; 

03 

eikfrk, 2 1 rkk j < cl, r’li = l’__li, Im r0 = 0 
k=--a, k-;-m (10.2) 

g(t) = i eiktn 
bk, z lgk/ < %? g/i = '-h Imgo = 0 

k=-_co k=-co 

Let P1 and p2 be the characteristic exponents of the solution. 'Ihen it 
is necessary for stability that the following conditions be satisfied 

- Re (~1 + ~2) = ro > 0 (10.3) 

In the considered case we have by (4.2) 

a 
Lo @) = p2 + 7.0 P +r + go, 4 L, (PI = J.-P P + g--l7 (q # 0) (10.4) 

Let us introduce the notation 

a1 (p) = Lo (P> - Lo (P> GOJ (PI, bl (PI = Lo (P> &L (P) 

a2 (p) = Lo @ - yi) - Lo (P - YQ S&,Y (P - YQ (10.5) 

bz (p) = Lo (P - ~9 S:,o., (P - Y i) 

Multiplying the expressions (9.2) and (9.8) by a,(p) we obtain 

al (~1 ~2 (P) - bl (P> b2 (P) = 0 (10.6) 

Let p = iy/2 + iz. Retaining only the linear terms of the expansion 

(10.5) in powers of 2, rk, qk' we obtain 

(10.7) 

q$+ iz)=+,+g,-yz+..., b,(q+ +$rY-~. + CY, .'. 

From (10.7) it follows that Eiquation (10.6) indeed has two roots 

Zlj 22 near to zero for snail values of qk and rk. If bl(po)b2(po) f 0, 

where pa is a root of F+ation (10.6) near iy/2, then a2(po) f 0 and the 
passage from (9.2) to (10.6) isqvalid. 
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Because of the property 9.1, the roots of Equation (10.6) which are 
near to iy/2 will be characteristic exponents of the solutions (to with- 
in a precision of ki) of Equation (10.1). 

Because the coefficients of Equation (10.1) are real, we have the 
following relations on the boundary of the region of instability where 
at least one of the characteristic exponents is equal to iy/Z: 

Equation (10.6) takes on the form 

(lO.9) 

If ?-a is increased, we find that a,,, > 0, and vice versa. From this 
follows the next 1-a 

Lemma 10.1. For small enough cl, cl, ro, and g, the equation of the 
boundary of the yth region of instability, with ra 2 0, will be 
Equation (10.91, a7 = 0. If r,.,> 0, and % > 0, we have stability, while 
for F > 0, a < 0, we have instability for the solutions of Equation 
(10.19. In caie r-a = 0, ar = 0, we have p1 = p2 = iy/2 (mod i), and the 
question on the stability cannot be answered without sane auxiliary in- 
vestigation. 

lbe criterion is convenient to use in the selection of the parameters. 
From Lemma (10.1) it follows that the quantity 1 al(yi/2)/ serves to 
stabilize, while the quantity 1 b,(yi/2)1 serves to uustabilize the system 
described by Equation (10.1). Equation (10.9) is applicable also for 

large values of rk# gk. In these cases it is sufficient to apply Lemma 
7.1 to (10.5). 

In the testing for stability it is necessary to ensure that the 
characteristic exponents do not take on the values f (y f l)i/2. 

We have the following relations which are exact to within infinites- 
imals of the second order in gk and rk: 

ri * 
a1 2 ( > =~‘o+go+ L] : *=_-oo ((g:T) (r-*(+ +++.G,)(+d-~,)+... 

qro. --Y 

- ,j;, kt7) (r-q(~+++g-q)(-$-q+y+g,+y>+... 
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Exarple 1O.f. (Taken from the work of [7 1 ). Let us find the boundary 

of the region of instability of the solution (when p2 = 4) of the equation 

d& + 2/r * + iA (1 + q cos at) y = 0 
dt 

(10.11) 

When p2 = 4, we obtain 

y = 4, ro = Zfp, g, = g-2 = $pq, go = /.l2 - 4 

?-i ( > 1 
al 

ri 1 
- 2 = p2 - 4 -I- 4fpi - 24 Q2p4, bi ( > -2-- = 16 q2p4 

Solving Equation (10.9) for p2, we obtain 

~2 = 4 + $ q2 f vq’ - 64f2 (10.12) 

Example 10.2. (From the work [ 8 1 ). Let us consider the equation 

(10.23) 

In this case we have 

F 
rl = r-‘-1 = - 2 ' 

y = 1,2, go = Y1- $ 1 y1 - 1 

From (10.10) and (10.9) we find the approximate equation for the first 

and second regions of instability. 

(10.14) 

For this equation the quantities bl(iy/2) I 0 if y is an even number. 

In the plane of the parameters (~1, 6) there are, therefore, no even 
regions of instability which touch the points y1 = n2, S = 0. 

11. Let us consider the system of differential equations of the type 

g + pfl (et) -$ + (C +,pP (WY = 0 (11.1) 

where C = (q2, . . . , aN2) is a diagonal matrix, aI2 > a22 > . . . > an2 > 0, 

cc 
1V (t) = 2] iV(k)ei’cf, iv(“) = I/Yjsck) []I~, A / LV’k’k / < CC 

; 

k=-cc k=--00 

p ct) = z pWeikf, P(k) = [I ITj,(l’) jp, g J P@) ( < oc (11.2) 
k=-co k=-cc 

By means of the substitutions 8t = r , r = t, 8 = A-’ we reduce the 

system (11.1) to the fonn 
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(11.3) 

Let X(p) = A, + p (. . .I, p,(p) (s = 1, . . . , 2m 1 be the characteristic 
exponent of the system (11.3). If p = 0, then p,(O) = iosho, 

Pm+8 (0) = - iO&& (s= 1 ,...,mr 1 h(O)=h=+>O 

We shall find the p,(p) with a accuracy up to small orders of p. 

Lo @> = Ep2 +/.AN”‘p I_ L2C + 

Lp (p) = ph N(-*) p + @a P(-*) 

If for all h f j, or y # 0 (y is an integer) 
hold for the given j 

$3 p(o) 

tcr+ 0) (11.4) 

the following conditions 

then we find on the basis of Section 9 that pj(~~ is a root (within the 
required order of accuracy) of the equation 

p2 + p~,vjpp + h%q + p~o%jj(o) = 0 (11.6) 

Suppose that the relation (11.5) is not satisfied for the given, and 
only for the given, j, h, y( j > h). Setting p0 = ojAo, we find that two 
terms, for k = 0 and k = - yfy > 01, of the sequence (9.5) will vanish 
(become zero) if p = p,i. Let us set 

p = ipo + iz (11.7) 

in Equations (9.21, (9.8). 

Furtherwore, instead of the werds ‘the element standing at the inter- 
section of sth row and rth column’ we shall simply write 6 Sr. Let us de- 
tennine the order with respect to p of the elements of the matrix (when 

h-h,=c+), ZOO) 

LO (P - yi) - Lo (P - yi) Xi, o, --y (p - yi) (11.8) 

we have 
E 8s = 0 (1) (s # h!, E sr = O(P) (s=f r) 

E)& (2) = (?b2 - ho2) Oh2 - 2 (po - y) 2 + (11.9) 

4 phh(“) (PO - y) i + ~~2~~,~(o) = 0 (p) 

‘lhen the order of the elements of the matrix which is the inverse of 
(11.8) will be 
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ehh’ = ehh-1 (4 + 0 (1) = 0 (p-‘>, esr’ = 0 (1) (s+ h, r # h) (11.10) 

From (6.1) and (11.4) we obtain 

Lo (poi + iz)S,Y,, _y (I)oi + iz) = -p.hiW (PO - y) i -p,haPY)+ p2 (...) +... 

Lo (poi - yi + iz) St!_,, o, -y (p0i + iz) (11.11) 

= - yhN’-Y’poi - $2 Py) + $ ( . . .) + . . . 

Let us determine the order of the elements of the matrix (9.8) 

ejj” = 0 (p), es8 u = 0 (1) (Sfi), ear #= ob-4 (a#r) 

If we multiply both sides of Equation (9.2) by chh we obtain, just as 

we did in Section 10, 

[(A” - ho2) 0j2 + /.AOVjjco)poi + IA1L02njjCo) - 2poZl [(A2 - A,‘) Oh2 + 

+ i&Vhh (‘) (PO - y) i + pLh02nhhco) - 2 @O - y) zl 

= p2h02 (vjh(” (PO - y) i + hO,‘jh(Y)) (Vhj(-‘)pOi + ho&j(-Y)) (11.12) 

Let us introduce the notation 

Ui = (2Wj)-i (2 (h - ho) 0j2 + $OVjj(")Wji + ~~osljj(0)) 

U2 = (2(oj-_~O))-1(2(h--O)Wh2f~1LOVhh'o'(~j-_~O) i+~~~hh(“)) (11.13) 

a3 = (Oj (Oj - rflO))-’ (vjh(‘) (C!Jj - Y80) i + njhcY') (vhj(-yhOji -k nhj(-” lp2h02 

Taking into account (11.7), we obtain from (11.12) the values of the 

characteristic exponents which have merged at the point p = ip, uhen 

/l = 0: 

pl,2 (p.) = ip0 + $ i (al + a2 tv(a~ - a2)2 + a3 ) (mod i) (11.14) 

A necessary condition for the stability of the solutions of the system 

(11.1) is 

Im (a~ + a2) > Im V’(ui - u2)’ + u3 (11.15) 

The case when the condition ( 11.5) is violated for several values h 

and y, has to be treated separately. 

E~aap 1 .Z if .I. Let us consider the canonical case [ 9, 10 1 of the system 

(11.1) when N(t) = 0. P*(t) = P(t); here the asterisk denotes the adjoint 
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matrix 

al = (20j)-1 (2 (h - h,) wja + ~aonjj”‘) 

aa = (2 (Oj - ye&l (2( h - h,) Oh9 + $,n/&~o)) 

as = (oj (oj - y60))-1 ~2A,2njh(Y)n,j(-Y) (n$) = Q-Y)) 

(11.16) 

From (11.14) it follows that if aj - y8, > 0, that is, if 8 = (o. - 

tih)/y, then the characteristic exponents are pure imaginary and disiinct; 
namely, we have the case of stability. This follows from the theorem of 
Krein [ 9,10 I. If aj - ~8, < 0, that is, if 8, = (“j + o$)/y, then on 
the boundary of the region of instability the characteristic exponents 
must coincide; namely, 

(a1 - a# + a5 = 0 (11.17) 

By means of the substitutions x = 8l, h, = 8,-l, and “j - Y8, = tih, 
we obtain the equation of the boundary of the region of instability 
[ 10 I (the formula of Malkin) 

%hh 
(0) 

-+- 
Oh 

f (11.18) 

In conclusion, I thank A.I. Lur'e for his help and his attention to 

this wrk. 

BIBLIOGRAPHY 

1. Strutt, M., Funktsii Lore, Mat’e i rodstvcnnyc im v fizike i tckhnikc 

(Functions of Lame’, Mathieu and Related Ones Occurring in Physics 

and Engineering). Kharkov, 1935. 

2. Lavrent’ev, M.A. and Shabat, B.V., Metody teorii funktsii kompleksa 

nogo peremennogo (Methods of the Theory of Functions of a Complex 

Variable). Gosfizmatizdat, MOSCOW, 1958. 

3. Coddington. E.A. and Levinson, N., Theory of Ordinary Differential 

Equations. (Russian translation) Izd-vo Inostr. lit. (Publishing 
House for Foreign Lit. ). h!oscOr, 1958. (Original English Edition, 

McGraw-Hill, 1955). 

4. Akhiezer. M. I., Lektsii po teorii approksimatsii (Lectures on the 

Theory of Approximations). OGIZ. Gostekhizdat, Moscow-Leningrad, 
1947 (p. 108). 



902 K. G. Yalecu 

5. Liapunov, A. M., Obshchaia zadacha ob ustoichivosti dvizheniia 

(General problem on the stability of motion). Sobr. soch. t.2 

p. 219 (Collected works, Vol. 2). Moscow-Leningrad, 1956. 

6. Erugin, N. P. , Metod Lappo-Danilevskogo D teorii lineinykh differen- 

tsial’nykh uravnenii (The method of Lappo-Danilevskii in the Theory 

of Linear Differential Equations). Izd-vo Leningr. un-ta (Publish- 

ing House of the Leningrad University), 1956. 

7. Andronov, A. A., 0 kolebanii sistemy s periodicheskimi meniaiushchi- 

misia parametrami (On the oscillation of a system with periodically 

changing parameters). Sobr. tr. (Collected marks). Izd. Akad. Nauk 

SSSR. 1956. 

8. Starzhinskii, V. M., Ob ustoichivosti trivial’nogo resheniia diffe- 

rentsial’nogo uravneniia vtorogo poriadka s periodicheskimi koeffi- 

tsientami (On the stability of the trivial solution of a second- 

order differential equation with periodic coefficients). Inzh. 

sbornik Vol. 18. 1954. 

9. Krein, M. G., Osnovnye polozheniia teorii h-zon ustoichivosti kanoni- 

cheskoi sistemy lineinykh differentsial’nykh uravnenii s periodi- 

cheskimi koeffitsientami (Fundamental propositions of the theory of 

X-zones of stability of a canonical system of linear differential 

equations with periodic coefficients). Sborn. “Pamiati A.A. Andro- 

nova” (Collection “In Memory of A.A. Andronov”). Izd-vo Akad. Nauk 

SSSR, Moscow, 1955. 

10. Malkin, I.G., Nekotorye zadachi teorii nelineinykh kolebanii (Some 

Problems in the Theory of Nonlinear Oscillations). GITTL, MOSCOW, 

1956 (p. 353). 

Translated by H.P.T. 


